Skip to main content

One of the most overlooked problems of blockchain systems is their ability to resist the fast-evolving machines known as quantum computers.

These powerful computers use quantum physics to solve complex problems that are beyond the reach of traditional devices by using qubits—an evolution of the classic binary bit. Qubits are able to represent the value 1 or 0 at the same time, which promises to deliver an exponential increase of computing power.

The world’s top superpowers are pouring billions of dollars into the development of this technology—and for good reason. The first nation or company to harness quantum computing will be poised to crack the encryption protecting rivals’ sensitive documents.

In the case of blockchain systems, the cryptography protecting their tamper-proof ledgers may be at risk. Researchers at the University of Sussex estimated in February that a quantum computer with 1.9 billion qubits could essentially crack the encryption safeguarding Bitcoin within a mere 10 minutes. Just 13 million qubits could do the job in about a day.

Fortunately, the ability to deploy quantum computers with so many qubits still seems many years away. IBM unveiled its 127-qubit processor just last year, while a unit sporting 1,000 qubits is set to be completed by the end of 2023.

“We’re not there yet,” said Jens Groth, a Danish professor in cryptology and encryption researcher at Dfinity. “Nobody knows what the exact time frame looks like, but blockchain might only be at risk within 10 to 20 years.”

Groth underlines that there’s an important distinction between two types of qubits—physical and logical ones. The latter describes a qubit that achieves a superposition between 1 and 0 via a quantum gate. A logical qubit consists of nine physical qubits. “Company announcements about a novel qubit milestone usually concern physical qubits, not logical ones,” he explains.

Defenders have the upper hand

Although researchers like Groth don’t classify quantum computers as an immediate threat to blockchain technology, experimentation with solutions is nevertheless ongoing. “Cryptographers do reflect on what a suitable countermeasure would look like,” Groth says.

Blockchain developers have a clear advantage in the race to defend against mounting computing power. Specifically, they can increase the number of digits in the cryptographic keys that protect the chain—a process that’s faster to scale than it is for the attackers to catch up. “The defenders are winning this battle in the long run,” Groth claims.

This is evident in the field of symmetric key encryption when examining the popular Advanced Encryption Standard (AES). The most common variation of 128 keys could be cracked by quantum computers and even classic attackers. However the AES 256 variation, featuring twice the amount of keys, appears strong enough to fend off brute force attacks by quantum machines for the foreseeable future.

Visit for more web3 news


People & Culture

Leave a Reply